TSTP Solution File: AGT035^1 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : AGT035^1 : TPTP v6.1.0. Bugfixed v5.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n101.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:17:41 EDT 2014

% Result   : Unknown 0.54s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : AGT035^1 : TPTP v6.1.0. Bugfixed v5.4.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n101.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 07:52:06 CDT 2014
% % CPUTime  : 0.54 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL013^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x1cb07e8>, <kernel.Type object at 0x1cb0710>) of role type named mu_type
% Using role type
% Declaring mu:Type
% FOF formula (<kernel.Constant object at 0x1cb09e0>, <kernel.DependentProduct object at 0x1cb07e8>) of role type named meq_ind_type
% Using role type
% Declaring meq_ind:(mu->(mu->(fofType->Prop)))
% FOF formula (((eq (mu->(mu->(fofType->Prop)))) meq_ind) (fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y))) of role definition named meq_ind
% A new definition: (((eq (mu->(mu->(fofType->Prop)))) meq_ind) (fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y)))
% Defined: meq_ind:=(fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y))
% FOF formula (<kernel.Constant object at 0x1cb07e8>, <kernel.DependentProduct object at 0x1cb0830>) of role type named meq_prop_type
% Using role type
% Declaring meq_prop:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))) of role definition named meq_prop
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))))
% Defined: meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))
% FOF formula (<kernel.Constant object at 0x1cb0950>, <kernel.DependentProduct object at 0x1cb09e0>) of role type named mnot_type
% Using role type
% Declaring mnot:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))) of role definition named mnot
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)))
% Defined: mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))
% FOF formula (<kernel.Constant object at 0x1cb09e0>, <kernel.DependentProduct object at 0x1cb0ea8>) of role type named mor_type
% Using role type
% Declaring mor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))) of role definition named mor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))))
% Defined: mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))
% FOF formula (<kernel.Constant object at 0x1cb0ea8>, <kernel.DependentProduct object at 0x1cb0290>) of role type named mand_type
% Using role type
% Declaring mand:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))) of role definition named mand
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))))
% Defined: mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))
% FOF formula (<kernel.Constant object at 0x1cb0290>, <kernel.DependentProduct object at 0x1cb0ab8>) of role type named mimplies_type
% Using role type
% Declaring mimplies:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))) of role definition named mimplies
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)))
% Defined: mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))
% FOF formula (<kernel.Constant object at 0x1cb0ab8>, <kernel.DependentProduct object at 0x1cb0440>) of role type named mimplied_type
% Using role type
% Declaring mimplied:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))) of role definition named mimplied
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)))
% Defined: mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))
% FOF formula (<kernel.Constant object at 0x1cb0440>, <kernel.DependentProduct object at 0x1cb09e0>) of role type named mequiv_type
% Using role type
% Declaring mequiv:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))) of role definition named mequiv
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))))
% Defined: mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))
% FOF formula (<kernel.Constant object at 0x1cb09e0>, <kernel.DependentProduct object at 0x1cb0ea8>) of role type named mxor_type
% Using role type
% Declaring mxor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))) of role definition named mxor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))))
% Defined: mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))
% FOF formula (<kernel.Constant object at 0x1cb0878>, <kernel.DependentProduct object at 0x1cb0440>) of role type named mforall_ind_type
% Using role type
% Declaring mforall_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W)))) of role definition named mforall_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W))))
% Defined: mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W)))
% FOF formula (<kernel.Constant object at 0x1cb0440>, <kernel.DependentProduct object at 0x1cb0f38>) of role type named mforall_prop_type
% Using role type
% Declaring mforall_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))) of role definition named mforall_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))))
% Defined: mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))
% FOF formula (<kernel.Constant object at 0x1cb0f38>, <kernel.DependentProduct object at 0x1cb0050>) of role type named mexists_ind_type
% Using role type
% Declaring mexists_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))) of role definition named mexists_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))))
% Defined: mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))
% FOF formula (<kernel.Constant object at 0x1cb0050>, <kernel.DependentProduct object at 0x1cb0878>) of role type named mexists_prop_type
% Using role type
% Declaring mexists_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))) of role definition named mexists_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))))
% Defined: mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))
% FOF formula (<kernel.Constant object at 0x1cb0878>, <kernel.DependentProduct object at 0x1cb0e60>) of role type named mtrue_type
% Using role type
% Declaring mtrue:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True)) of role definition named mtrue
% A new definition: (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True))
% Defined: mtrue:=(fun (W:fofType)=> True)
% FOF formula (<kernel.Constant object at 0x1f0b200>, <kernel.DependentProduct object at 0x1cb0b00>) of role type named mfalse_type
% Using role type
% Declaring mfalse:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mfalse) (mnot mtrue)) of role definition named mfalse
% A new definition: (((eq (fofType->Prop)) mfalse) (mnot mtrue))
% Defined: mfalse:=(mnot mtrue)
% FOF formula (<kernel.Constant object at 0x1cb07e8>, <kernel.DependentProduct object at 0x1cb0b00>) of role type named mbox_type
% Using role type
% Declaring mbox:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))) of role definition named mbox
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))))
% Defined: mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x1cb1368>, <kernel.DependentProduct object at 0x1cb1c20>) of role type named mdia_type
% Using role type
% Declaring mdia:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))) of role definition named mdia
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))))
% Defined: mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))
% FOF formula (<kernel.Constant object at 0x1cb1bd8>, <kernel.DependentProduct object at 0x1cb0b00>) of role type named mreflexive_type
% Using role type
% Declaring mreflexive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))) of role definition named mreflexive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))))
% Defined: mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))
% FOF formula (<kernel.Constant object at 0x1cb1bd8>, <kernel.DependentProduct object at 0x1cb0050>) of role type named msymmetric_type
% Using role type
% Declaring msymmetric:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))) of role definition named msymmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))))
% Defined: msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))
% FOF formula (<kernel.Constant object at 0x1cb1c20>, <kernel.DependentProduct object at 0x1cb0050>) of role type named mserial_type
% Using role type
% Declaring mserial:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))) of role definition named mserial
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))))
% Defined: mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))
% FOF formula (<kernel.Constant object at 0x1cb0710>, <kernel.DependentProduct object at 0x1cb07a0>) of role type named mtransitive_type
% Using role type
% Declaring mtransitive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))) of role definition named mtransitive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))))
% Defined: mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))
% FOF formula (<kernel.Constant object at 0x1cb0050>, <kernel.DependentProduct object at 0x1ab4878>) of role type named meuclidean_type
% Using role type
% Declaring meuclidean:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))) of role definition named meuclidean
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))))
% Defined: meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))
% FOF formula (<kernel.Constant object at 0x1cb0878>, <kernel.DependentProduct object at 0x1ab46c8>) of role type named mpartially_functional_type
% Using role type
% Declaring mpartially_functional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))) of role definition named mpartially_functional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))))
% Defined: mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))
% FOF formula (<kernel.Constant object at 0x1cb0878>, <kernel.DependentProduct object at 0x1ab4518>) of role type named mfunctional_type
% Using role type
% Declaring mfunctional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))) of role definition named mfunctional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))))
% Defined: mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))
% FOF formula (<kernel.Constant object at 0x1cb0710>, <kernel.DependentProduct object at 0x1ab4ab8>) of role type named mweakly_dense_type
% Using role type
% Declaring mweakly_dense:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))) of role definition named mweakly_dense
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))))
% Defined: mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))
% FOF formula (<kernel.Constant object at 0x1ab4ab8>, <kernel.DependentProduct object at 0x1ab4a28>) of role type named mweakly_connected_type
% Using role type
% Declaring mweakly_connected:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))) of role definition named mweakly_connected
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))))
% Defined: mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))
% FOF formula (<kernel.Constant object at 0x1ab4a28>, <kernel.DependentProduct object at 0x1ab4ea8>) of role type named mweakly_directed_type
% Using role type
% Declaring mweakly_directed:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))) of role definition named mweakly_directed
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))))
% Defined: mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))
% FOF formula (<kernel.Constant object at 0x1ab48c0>, <kernel.DependentProduct object at 0x1ab4d40>) of role type named mvalid_type
% Using role type
% Declaring mvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))) of role definition named mvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))))
% Defined: mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))
% FOF formula (<kernel.Constant object at 0x1ab4a28>, <kernel.DependentProduct object at 0x1ab49e0>) of role type named minvalid_type
% Using role type
% Declaring minvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))) of role definition named minvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))))
% Defined: minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))
% FOF formula (<kernel.Constant object at 0x1ab4d40>, <kernel.DependentProduct object at 0x1ab4440>) of role type named msatisfiable_type
% Using role type
% Declaring msatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))) of role definition named msatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))))
% Defined: msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))
% FOF formula (<kernel.Constant object at 0x1ab49e0>, <kernel.DependentProduct object at 0x1ab4dd0>) of role type named mcountersatisfiable_type
% Using role type
% Declaring mcountersatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))) of role definition named mcountersatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))))
% Defined: mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))
% FOF formula (<kernel.Constant object at 0x1f003b0>, <kernel.DependentProduct object at 0x1f00680>) of role type named a1
% Using role type
% Declaring a1:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1f00170>, <kernel.DependentProduct object at 0x1f00638>) of role type named a2
% Using role type
% Declaring a2:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1f00440>, <kernel.DependentProduct object at 0x1f09cb0>) of role type named a3
% Using role type
% Declaring a3:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1f00950>, <kernel.Constant object at 0x1f00170>) of role type named jan
% Using role type
% Declaring jan:mu
% FOF formula (<kernel.Constant object at 0x1f00098>, <kernel.Constant object at 0x1f00170>) of role type named piotr
% Using role type
% Declaring piotr:mu
% FOF formula (<kernel.Constant object at 0x1f00440>, <kernel.Constant object at 0x1f00950>) of role type named cola
% Using role type
% Declaring cola:mu
% FOF formula (<kernel.Constant object at 0x1f09cb0>, <kernel.Constant object at 0x1f00950>) of role type named pepsi
% Using role type
% Declaring pepsi:mu
% FOF formula (<kernel.Constant object at 0x1f00170>, <kernel.Constant object at 0x1f00440>) of role type named beer
% Using role type
% Declaring beer:mu
% FOF formula (<kernel.Constant object at 0x1f00638>, <kernel.DependentProduct object at 0x1997ab8>) of role type named likes
% Using role type
% Declaring likes:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x1f00440>, <kernel.DependentProduct object at 0x1cb2ab8>) of role type named very_much_likes
% Using role type
% Declaring very_much_likes:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x1f00638>, <kernel.DependentProduct object at 0x1cb2098>) of role type named possibly_likes
% Using role type
% Declaring possibly_likes:(mu->(mu->(fofType->Prop)))
% FOF formula (mvalid ((mbox a1) ((likes jan) cola))) of role axiom named axiom_a1_1
% A new axiom: (mvalid ((mbox a1) ((likes jan) cola)))
% FOF formula (mvalid ((mbox a1) ((likes piotr) pepsi))) of role axiom named axiom_a1_2
% A new axiom: (mvalid ((mbox a1) ((likes piotr) pepsi)))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((mbox a1) ((mimplies ((mdia a1) ((likes X) pepsi))) ((likes X) cola)))))) of role axiom named axiom_a1_3
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((mbox a1) ((mimplies ((mdia a1) ((likes X) pepsi))) ((likes X) cola))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((mbox a1) ((mimplies ((mdia a1) ((likes X) cola))) ((likes X) pepsi)))))) of role axiom named axiom_a1_4
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((mbox a1) ((mimplies ((mdia a1) ((likes X) cola))) ((likes X) pepsi))))))
% FOF formula (mvalid ((mbox a2) ((likes jan) pepsi))) of role axiom named axiom_a2_1
% A new axiom: (mvalid ((mbox a2) ((likes jan) pepsi)))
% FOF formula (mvalid ((mbox a1) ((likes piotr) cola))) of role axiom named axiom_a2_2
% A new axiom: (mvalid ((mbox a1) ((likes piotr) cola)))
% FOF formula (mvalid ((mbox a1) ((likes piotr) beer))) of role axiom named axiom_a2_3
% A new axiom: (mvalid ((mbox a1) ((likes piotr) beer)))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((mbox a2) ((mimplies ((likes X) pepsi)) ((likes X) cola)))))) of role axiom named axiom_a2_4
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((mbox a2) ((mimplies ((likes X) pepsi)) ((likes X) cola))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((mbox a2) ((mimplies ((likes X) cola)) ((likes X) pepsi)))))) of role axiom named axiom_a2_5
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((mbox a2) ((mimplies ((likes X) cola)) ((likes X) pepsi))))))
% FOF formula (mvalid ((mbox a3) ((likes jan) cola))) of role axiom named axiom_a3_1
% A new axiom: (mvalid ((mbox a3) ((likes jan) cola)))
% FOF formula (mvalid ((mdia a3) ((likes piotr) pepsi))) of role axiom named axiom_a3_2
% A new axiom: (mvalid ((mdia a3) ((likes piotr) pepsi)))
% FOF formula (mvalid ((mdia a1) ((likes piotr) beer))) of role axiom named axiom_a3_3
% A new axiom: (mvalid ((mdia a1) ((likes piotr) beer)))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mbox a3) ((mimplies ((mand ((likes X) Y)) ((mand ((mbox a1) ((likes X) Y))) ((mbox a2) ((likes X) Y))))) ((very_much_likes X) Y)))))))) of role axiom named axiom_a3_4
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mbox a3) ((mimplies ((mand ((likes X) Y)) ((mand ((mbox a1) ((likes X) Y))) ((mbox a2) ((likes X) Y))))) ((very_much_likes X) Y))))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mbox a3) ((very_much_likes X) Y))) ((very_much_likes X) Y))))))) of role axiom named axiom_user_communication_1
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mbox a3) ((very_much_likes X) Y))) ((very_much_likes X) Y)))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a3) ((very_much_likes X) Y))) ((likes X) Y))))))) of role axiom named axiom_user_communication_2
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a3) ((very_much_likes X) Y))) ((likes X) Y)))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a1) ((likes X) Y))) ((possibly_likes X) Y))))))) of role axiom named axiom_user_communication_3
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a1) ((likes X) Y))) ((possibly_likes X) Y)))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a2) ((likes X) Y))) ((possibly_likes X) Y))))))) of role axiom named axiom_user_communication_4
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a2) ((likes X) Y))) ((possibly_likes X) Y)))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a3) ((likes X) Y))) ((possibly_likes X) Y))))))) of role axiom named axiom_user_communication_5
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a3) ((likes X) Y))) ((possibly_likes X) Y)))))))
% FOF formula (msymmetric a1) of role axiom named axioms_B_a1
% A new axiom: (msymmetric a1)
% FOF formula (msymmetric a2) of role axiom named axioms_B_a2
% A new axiom: (msymmetric a2)
% FOF formula (msymmetric a3) of role axiom named axioms_B_a3
% A new axiom: (msymmetric a3)
% FOF formula (mserial a1) of role axiom named axioms_D_a1
% A new axiom: (mserial a1)
% FOF formula (mserial a2) of role axiom named axioms_D_a2
% A new axiom: (mserial a2)
% FOF formula (mserial a3) of role axiom named axioms_D_a3
% A new axiom: (mserial a3)
% FOF formula (<kernel.Constant object at 0x1cb1e60>, <kernel.DependentProduct object at 0x1cb0200>) of role type named subrel
% Using role type
% Declaring subrel:((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))) subrel) (fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R1 X) Y)->((R2 X) Y))))) of role definition named subrel_def
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))) subrel) (fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R1 X) Y)->((R2 X) Y)))))
% Defined: subrel:=(fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R1 X) Y)->((R2 X) Y))))
% FOF formula ((subrel a1) a2) of role axiom named axiom_I_a1_a2
% A new axiom: ((subrel a1) a2)
% FOF formula ((subrel a1) a3) of role axiom named axiom_I_a1_a3
% A new axiom: ((subrel a1) a3)
% FOF formula ((subrel a2) a3) of role axiom named axiom_I_a2_a3
% A new axiom: ((subrel a2) a3)
% FOF formula (<kernel.Constant object at 0x1cb03f8>, <kernel.DependentProduct object at 0x1cb0bd8>) of role type named cond4s
% Using role type
% Declaring cond4s:((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))) cond4s) (fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (U:fofType) (V:fofType) (W:fofType), (((and ((R1 U) V)) ((R2 V) W))->((R2 U) W))))) of role definition named cond4s_def
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop))) cond4s) (fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (U:fofType) (V:fofType) (W:fofType), (((and ((R1 U) V)) ((R2 V) W))->((R2 U) W)))))
% Defined: cond4s:=(fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (U:fofType) (V:fofType) (W:fofType), (((and ((R1 U) V)) ((R2 V) W))->((R2 U) W))))
% FOF formula ((cond4s a1) a1) of role axiom named axioms_Is_a1_a1
% A new axiom: ((cond4s a1) a1)
% FOF formula ((cond4s a1) a2) of role axiom named axioms_Is_a1_a2
% A new axiom: ((cond4s a1) a2)
% FOF formula ((cond4s a1) a3) of role axiom named axioms_Is_a1_a3
% A new axiom: ((cond4s a1) a3)
% FOF formula ((cond4s a2) a1) of role axiom named axioms_Is_a2_a1
% A new axiom: ((cond4s a2) a1)
% FOF formula ((cond4s a2) a2) of role axiom named axioms_Is_a2_a2
% A new axiom: ((cond4s a2) a2)
% FOF formula ((cond4s a2) a3) of role axiom named axioms_Is_a2_a3
% A new axiom: ((cond4s a2) a3)
% FOF formula ((cond4s a1) a1) of role axiom named axioms_Is_a3_a1
% A new axiom: ((cond4s a1) a1)
% FOF formula ((cond4s a2) a2) of role axiom named axioms_Is_a3_a2
% A new axiom: ((cond4s a2) a2)
% FOF formula ((cond4s a3) a3) of role axiom named axioms_Is_a3_a3
% A new axiom: ((cond4s a3) a3)
% FOF formula (meuclidean a1) of role axiom named axioms_5_a1
% A new axiom: (meuclidean a1)
% FOF formula (meuclidean a2) of role axiom named axioms_5_a2
% A new axiom: (meuclidean a2)
% FOF formula (meuclidean a3) of role axiom named axioms_5_a3
% A new axiom: (meuclidean a3)
% FOF formula (mvalid ((likes jan) cola)) of role conjecture named conjecture
% Conjecture to prove = (mvalid ((likes jan) cola)):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(mvalid ((likes jan) cola))']
% Parameter mu:Type.
% Parameter fofType:Type.
% Definition meq_ind:=(fun (X:mu) (Y:mu) (W:fofType)=> (((eq mu) X) Y)):(mu->(mu->(fofType->Prop))).
% Definition meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)):((fofType->Prop)->(fofType->Prop)).
% Definition mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), ((Phi X) W))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mtrue:=(fun (W:fofType)=> True):(fofType->Prop).
% Definition mfalse:=(mnot mtrue):(fofType->Prop).
% Definition mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Definition mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Definition mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))):((fofType->(fofType->Prop))->Prop).
% Definition msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))):((fofType->(fofType->Prop))->Prop).
% Definition mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))):((fofType->(fofType->Prop))->Prop).
% Definition meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))):((fofType->(fofType->Prop))->Prop).
% Definition mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))):((fofType->Prop)->Prop).
% Definition minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))):((fofType->Prop)->Prop).
% Definition msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))):((fofType->Prop)->Prop).
% Definition mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))):((fofType->Prop)->Prop).
% Parameter a1:(fofType->(fofType->Prop)).
% Parameter a2:(fofType->(fofType->Prop)).
% Parameter a3:(fofType->(fofType->Prop)).
% Parameter jan:mu.
% Parameter piotr:mu.
% Parameter cola:mu.
% Parameter pepsi:mu.
% Parameter beer:mu.
% Parameter likes:(mu->(mu->(fofType->Prop))).
% Parameter very_much_likes:(mu->(mu->(fofType->Prop))).
% Parameter possibly_likes:(mu->(mu->(fofType->Prop))).
% Axiom axiom_a1_1:(mvalid ((mbox a1) ((likes jan) cola))).
% Axiom axiom_a1_2:(mvalid ((mbox a1) ((likes piotr) pepsi))).
% Axiom axiom_a1_3:(mvalid (mforall_ind (fun (X:mu)=> ((mbox a1) ((mimplies ((mdia a1) ((likes X) pepsi))) ((likes X) cola)))))).
% Axiom axiom_a1_4:(mvalid (mforall_ind (fun (X:mu)=> ((mbox a1) ((mimplies ((mdia a1) ((likes X) cola))) ((likes X) pepsi)))))).
% Axiom axiom_a2_1:(mvalid ((mbox a2) ((likes jan) pepsi))).
% Axiom axiom_a2_2:(mvalid ((mbox a1) ((likes piotr) cola))).
% Axiom axiom_a2_3:(mvalid ((mbox a1) ((likes piotr) beer))).
% Axiom axiom_a2_4:(mvalid (mforall_ind (fun (X:mu)=> ((mbox a2) ((mimplies ((likes X) pepsi)) ((likes X) cola)))))).
% Axiom axiom_a2_5:(mvalid (mforall_ind (fun (X:mu)=> ((mbox a2) ((mimplies ((likes X) cola)) ((likes X) pepsi)))))).
% Axiom axiom_a3_1:(mvalid ((mbox a3) ((likes jan) cola))).
% Axiom axiom_a3_2:(mvalid ((mdia a3) ((likes piotr) pepsi))).
% Axiom axiom_a3_3:(mvalid ((mdia a1) ((likes piotr) beer))).
% Axiom axiom_a3_4:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mbox a3) ((mimplies ((mand ((likes X) Y)) ((mand ((mbox a1) ((likes X) Y))) ((mbox a2) ((likes X) Y))))) ((very_much_likes X) Y)))))))).
% Axiom axiom_user_communication_1:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mbox a3) ((very_much_likes X) Y))) ((very_much_likes X) Y))))))).
% Axiom axiom_user_communication_2:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a3) ((very_much_likes X) Y))) ((likes X) Y))))))).
% Axiom axiom_user_communication_3:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a1) ((likes X) Y))) ((possibly_likes X) Y))))))).
% Axiom axiom_user_communication_4:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a2) ((likes X) Y))) ((possibly_likes X) Y))))))).
% Axiom axiom_user_communication_5:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((mdia a3) ((likes X) Y))) ((possibly_likes X) Y))))))).
% Axiom axioms_B_a1:(msymmetric a1).
% Axiom axioms_B_a2:(msymmetric a2).
% Axiom axioms_B_a3:(msymmetric a3).
% Axiom axioms_D_a1:(mserial a1).
% Axiom axioms_D_a2:(mserial a2).
% Axiom axioms_D_a3:(mserial a3).
% Definition subrel:=(fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (X:fofType) (Y:fofType), (((R1 X) Y)->((R2 X) Y)))):((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop)).
% Axiom axiom_I_a1_a2:((subrel a1) a2).
% Axiom axiom_I_a1_a3:((subrel a1) a3).
% Axiom axiom_I_a2_a3:((subrel a2) a3).
% Definition cond4s:=(fun (R1:(fofType->(fofType->Prop))) (R2:(fofType->(fofType->Prop)))=> (forall (U:fofType) (V:fofType) (W:fofType), (((and ((R1 U) V)) ((R2 V) W))->((R2 U) W)))):((fofType->(fofType->Prop))->((fofType->(fofType->Prop))->Prop)).
% Axiom axioms_Is_a1_a1:((cond4s a1) a1).
% Axiom axioms_Is_a1_a2:((cond4s a1) a2).
% Axiom axioms_Is_a1_a3:((cond4s a1) a3).
% Axiom axioms_Is_a2_a1:((cond4s a2) a1).
% Axiom axioms_Is_a2_a2:((cond4s a2) a2).
% Axiom axioms_Is_a2_a3:((cond4s a2) a3).
% Axiom axioms_Is_a3_a1:((cond4s a1) a1).
% Axiom axioms_Is_a3_a2:((cond4s a2) a2).
% Axiom axioms_Is_a3_a3:((cond4s a3) a3).
% Axiom axioms_5_a1:(meuclidean a1).
% Axiom axioms_5_a2:(meuclidean a2).
% Axiom axioms_5_a3:(meuclidean a3).
% Trying to prove (mvalid ((likes jan) cola))
% % SZS status GaveUp for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------